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(c) Characterization of a needle-type texture by 
parameters. From (1) or from the general results of 
Roe & Krigbaum one derives easily the following rela- 
tion between the coefficients A2n and B2n of Pn in a 
development o f f ( z )  and g(z) in Legendre functions 
Pn (cos (0): 

BEn= P2n (cos rp). A2n • (2) 

Hence the coefficients A2n would appear to be the 
most suitable parameters to characterize the texture. 
Indeed the results of Fig. 2 and 3 were obtained by a 
spherical harmonic analysis of the curve of Fig. 2, fol- 
lowed by application of equation (2) and subsequent 
synthesis. 

It is doubtful, however, whether this approach is the 
most appropriate one if a weak texture has to be elim- 
inated from a number of precision intensity measure- 
ments. The distribution of Fig. 2 and 3 is probably 
typical of the rather broad type of maxima to be ex- 
pected. The calculation mentioned above has shown 
that many (here 12) terms are needed to obtain a rea- 
sonable degree of accuracy. If the texture itself is only 
weak, a smaller number may be sufficient, but hardly 
less than 5 or so. It may be advantageous to sacrifice 
the simple and linear relationship expressed by equa- 
tion (2), and to define f ( f l )  by some parameters more 
closely adapted to its expected form. As such, one 
might think of just two parameters, defining height 
and width of the maximum, respectively. This leads to 
much more complicated relations between f ( z )  and 
g(z), which would have to be completely available in 
order to allow the elimination of such a pair of param- 
eters from a set of measurements. 
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DISCUSSION 

WEISS: It is true that preferred orientation effects can be 
disentangled given a thin enough transmission specimen, 
but I suspect that an accuracy of ~ 1% is required. 

DE WOLFF: The texture must not be too pronounced; there 
are techniques for reducing it with transmission specimens. 

WEtSS: Suppose you use Mo Ke on a powder specimen of a 
transition element, such as iron, it is difficult to make your 
specimen thin enough, when the 1/e thickness is only a few 
thousandths of an inch. 

DE WOLFF: You should aim at a thickness even less than the 
1/e value. 

MILLEDGE: Those directly concerned with the investiga- 
tion of orientation use special techniques for their detec- 
tion. Could these be of assistance? 

DE WOLFF" In principle you are correct, but the materials 
which are usually studied by powder procedures are gener- 
ally not of simple symmetry and it is difficult to select re- 
flexions sufficiently strong and sensitive to orientation to be 
effective. 

ALEXANDER: For very thin specimens, the statistical grain 
size problem is very severe. Appropriate specimen prepara- 
tion and handling is obviously of importance to smooth 
out the distribution. 

DE WOLFF" With the appropriate specimen movement, the 
axis of the distribution can be fixed. 
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Conversion of Relative Intensities to an Absolute Scale 

G1 "2 

BY DAVID R. CHIPMAN 
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The determination of an absolute scale for X-ray intensities involves the experimental evaluation of a 
number of constants in the intensity equation whose values are not normally required. The absolute 
intensities so obtained will not be useful, in the present context, unless the overall accuracy can be 
maintained at about 1% or better. Some of the difficulties which can occur in making the measurements 
to the necessary accuracy are discussed. 

Introduction 

If a Bragg reflection from an ideal powder is measured 
by scanning a slit through it in the usual way, the 
integrated intensity, P, is related to the structure fac- 
tor, F, by the equation: 

P = \ 32nRallco sin a 0 cos 0 (1 + k )  (Fa) " (1) 

P0 is the total power in the primary beam, N the num- 
ber of unit cells per unit volume, r0 the classical elec- 
tron radius, 2 the wavelength, l and w the length and 
width of the receiving slit, R the radius of the spectrom- 
eter, ¢t the linear absorption coefficient, co the an- 
gular velocity of the receiving slit, j the multiplicity, 
K the polarization ratio of the monochromator  (K-- 
cos a 20 if the monochromator  reflects as an ideal 
mosaic), and 0 the Bragg angle. Since the factors in 
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the first term are all independent of angle, a set of 
relative intensities can be converted to a set of relative 
structure factors by consideration only of those fac- 
tors appearing in the second term. These relative struc- 
ture factors may then be put on an absolute scale by 
evaluation of the quantities in the first term, and it is 
the measurement of these quantities which will be the 
subject of this paper. 

It is possible, of course, to by-pass the evaluation 
of many of the factors in this first term and still achieve 
a set of structure factors on an approximately correct 
absolute scale. This may be done, for example, by 
comparison with a second substance whose scattering 
factor is presumed known, and in this case only the 
absorption coefficients need be measured. Or, one may 
presume to know something about the scattering fac- 
tor of the primary substance itself, for example, its 
value at high sin 0/2, and effect a standardization with- 
out consideration of the first term. However, since 
these methods do not lead to a completely independent 
determination of the scattering factor, and since the 
probable errors are difficult to evaluate, they will not 
be considered here. Based on the conviction that an 
absolute accuracy of 1% in intensity is necessary, the 
approach taken here will be that each quantity in the 
first term, with the exception of numerical factors, 
must be determined experimentally. The measurement 
of these quantities is, in each case, quite straightfor- 
ward in principle. Because of the high accuracy re- 
quired, difficulties arise in many subtle ways, and it is 
hard for one person to foresee all of the problems with 
which another may be faced. Therefore, this paper will 
consist principally of examples taken from the author's 
own experience, with the hope that these may suggest 
further improvements in overall accuracy. 

Measurement of the primary beam power, Po 

In a typical monochromatic powder diffraction appa- 
ratus, the primary beam may contain over 108 counts 
per second. This power is too great to be measured 
directly with the usual types of X-ray counter; the rate 
is therefore first reduced by an accurately known fac- 
tor of about 104 t o  105. A number of methods have 
been suggested and used to accomplish this reduction. 
Among these are: the use of absorbers alone, or the 
use of a perfect single crystal rocked through its re- 
flecting range (Batterman, Chipman & DeMarco, 1961) 
- the use of a narrow slit scanned through the direct 
beam plus a lesser number of absorbers (Paakkari & 
Suortti, 1966, for example)-  the use of a type of counter 
which can count the full primary beam (cf. Witte & 
W61fel, 1958). 

Each of these methods has its own particular dif- 
ficulties; perhaps a discussion of some of the considera- 
tions necessary in carrying out a measurement by the 
method of absorbers alone will serve as an illustration 
of the types of difficulties which can be expected in 
general. 

The primary beam coming from the monochromator 
contains the Ke wavelengths plus a small band on 
either side, and a weak continuum scattered by the 
monochromator crystal. Further, if the tube is operated 
at high potential, harmonics of the basic wavelength 
will be present. Because of their lesser attenuation in 
the absorbers, the shorter wavelengths may cause ap- 
preciable error in the measurement of P0. Fig. 1 shows 
pulse height distributions taken with the counter in 
the primary (Cu Kc0 beam adjusted to have a total 
(integral) count rate of about 5500 counts per second 
by operating at: (a) 14 kV with Ni absorbers, (b) 40 kV 
with A1 absorbers, (c) 40 kV with Ni absorbers. At 
40 kV, Ni absorbers are clearly better than A1 absor- 
bers. But one must still rely on the pulse height ana- 
lyzer to reject the higher energy counts to the required 
accuracy, and it is preferable, as we shall see, to set 
the PHA limits not too close to the peak. Further, 
these extra counts will affect the dead time correction. 
However, as shown in Fig. 2, if the tube is operated 
below the half wavelength voltage [condition (a)] the 
absorption coefficient of Ni is larger for nearly all pos- 
sible wavelengths than for Cu Kc~. For a small band 
between Cu Kc~ and the Ni K edge, however, this is not 
the case and it is possible for significant effects to arise 
on this account. 

In addition, the difference in absorption for the K0q 
and K~E wavelengths must be considered. A straight- 
forward method for measuring the absorption factors 
of the foils is to use the direct beam with all foils in 

10 kV Ni Absorbers 
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10 (b) 40 kV AI Absorbers 
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Fig.  l .  Pulse he ight  d i s t r i bu t i ons  taken w i t h  a N a I ( T I )  scin- 
t i l l a t i on  coun te r  o f  rad ia t i on  f rom a Cu target tube m o n o -  
chromated  by a bent LiF crystal. Absorber thickness was 
adjusted to make the total count  rate 5500 cts/sec in each 
case. 
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place. They are then removed and replaced one at a 
time, and the ratios measured. If the total reduction 
of the primary beam is taken as the product of the 
individually measured ratios, one can show that be- 
cause of the presence of the two wavelengths, the meas- 
urement of P0 will be too small, the factor being: 

[x, +x2 exp { (n -  1) (fll-fl2)t}] n 
[x, + x2 exp {(n) (lz,-lu2)t }]n-, ' 

(2) 

where xl and x2 are the relative fractions of Keq and 
K0c2, in the incident beam, Pl and ¢t2 are the absorption 
coefficients of the foils for Kcq and Kc~2 respectively, 
t is the thickness of a foil, and n is the total number of 
foils. For a typical case, x1=0.67, x2=0.33, n = 5 ,  

exp (lzlt) = 10.0, Aft = 3(32/2). (p) = 0.0181/z for Mo Kc~, 
and equation (2) yields 0.9964. If a much weaker beam 
having the same composition as the primary beam 
were available, the absorption of the foils could be 
measured one at a time. In this case, the resulting P0 
would be too large by the factor: 

[(x, + xz exp {n(cq-lu2)t }] 
[x, + Xz exp {(p , -p2) t  }]n 

(3) 

Using the same typical values, this equation yields 
1.0039. If the foils were measured in a beam of ap- 
preciably different composition, the effects could be 
larger, but these typical results are, of course, large 
enough to warrant correction. 
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Fig.2 .  Mass absorpt ion coefficients of Ni as a function of  
wavelength. 
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Fig. 3. The absorpt ion factor of a foil v e r s u s  the count  rate of 
the incident X-ray beam. The intercept gives the true ab- 
sorpt ion factor and the slope is proport ional  to the dead 
time, v. 

Measurement of the dead time 

It is essential that the dead time of the counting ap- 
paratus be measured, and that corrections for dead 
time effects be made. The simple method outlined be- 
low has been in use for some time in our laboratory. 
We take the relation N t = N / ( 1 - N r )  where Nt and N 
are the true and measured count rates respectively, 
and r is the dead time. The absorption factor of a foil 
is now measured at a number of different incident count 
rates. This factor is the ratio, R, of the count rate with 
foil out, No, to the rate with foil in, N~. Using the above 
relation between Nt and N one can show that:  

R = Rt - Noz (R t -  1). (4) 

If each measured R is plotted against its count rate 
No (foil out), a curve such as is given in Fig. 3 results. 
The slope of the line gives z ( R t - 1 )  and the intercept 
gives Rt. 

Several worthwhile observations relative to the above 
can be made. First, the measurements lead to a very 
linear relation between R and No (Fig. 3) showing that 
a single dead time will handle the correction up to 
quite high count rates. Statistical errors in the Figure 
are shown by the size of the circles. Second, if one of 
the foils to be used in the P0 measurement has been 
used to obtain Fig. 3, its absorption factor will be a 
by-product. Furthermore, the absorption factors of the 
other P0 foils can be quickly and accurately measured 
relative to this foil at high count rates, correcting for 
the small differences by means of the dead time curve. 
Third, the often encountered phrase 'linear range for 
the counter'  has no meaning; for a typical five micro- 
second dead time, a count rate as low as 800 c/s re- 
quires a 0.4 % correction. This error made for each of 
five foils would result in an error of 2 % in P0. 

Before leaving the subject, perhaps a few remarks 
on dead time corrections to peak integrals could be 
included. Here the count rate varies from low to high 
to low again as the peak is scanned, but if N is taken 
as the instantaneous count rate, the above relation 
between N and Aft still holds, and the true peak inte- 
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gral, Pt, is given by I Ntdt= ~ N/(1-Nr)dt. Expand- 
ing and replacing N by nh, where h is the count rate 
at the peak, the integral can be written: 

Sn2  ' ln3  ] 
Pt = P 1 + vh . . . .  + ~'2h2 . . . . . . . .  Jr-  . . . .  ( 5 )  

I ndt I ndt 

The ratios of the integrals in equation (5) can be cal- 
culated analytically for some peak shapes. For ex- 
ample, for a Gaussian form, S n=dt/S n dt= 1/I/x. How- 
ever, these ratios can easily be evaluated numerically 
for any peak whose shape is known. Hosoya & 
Yamagishi (1967), using an approximate expression 
equivalent to the first two terms in equation (5), have 
calculated the correction for a few special shapes in- 
cluding the Gaussian. For many applications, terms 
in z2h 2 and higher are indeed negligible. However, for 
the not too extreme case of r = 5 microsec and h = 104 
cts/sec, the third term amounts to about 0-15 %. 

Checks of the counting system 

In addition to measurement of the dead time, there 
are a number of checks which should be made on a 
counting system before it is used in the accumulation 
of highly accurate data. Many of these such as periodic 
checks on background and overall gain stability are 
well known and will not be discussed. Particularly per- 
tinent to the measurement of absolute intensities, how- 
ever, is a point which is often overlooked. The direct 
beam enters the counter in a somewhat different place 
and with a different distribution than does the dif- 
fracted beam (through the receiving slit). The counter 
must therefore have a uniform sensitivity over at least 
the entire portion which is used. We have found that 
(1) scintillation crystals, even when new, may show a 
change of sensitivity across the face perhaps because 
of variations in thickness of the beryllium window - 
(2) scintillation crystals tend to go bad rather quickly 
presumably because of the intrusion of water through 
the beryllium (this often occurs within six to twelve 
months of the time of purchase and lowers the sen- 
sitivity drastically in spots) - (3) the gain of the scin- 
tillation crystal-photomultiplier combination may de- 
pend on position across the face of the counter. There- 
fore, if the pulse height analyzer is set with upper and 
lower limits quite close to the pulse distribution for 
the case of beams hitting near the counter's center, 
photons hitting away from center may be counted with 
reduced efficiency. 

Other types of X-ray counter may avoid some of the 
difficulties mentioned above, but will likely have other 
difficulties of their own. Problems with any type of 
counter can probably be overcome with care; we favor 
the scintillation counter because its high efficiency 
(nearly 100%) ensures that rays entering from dif- 

ferent directions will be counted with nearly the same 
sensitivity. 

Measurement of the receiving slit area 

Accurate measurement of the receiving slit area pre- 
sents some challenge, particularly for fairly narrow 
slits. If the receiving slit itself is scanned through the 
primary beam in a P0 measurement, the width is not 
needed, but care must be taken that the width is con- 
stant over the entire length, which must be large enough 
to include all of the primary intensity. If this method 
is not used, both width and length must be measured. 
We have used X-rays in this measurement. If a pinhole 
is placed in the beam and the slit scanned across the 
pinhole, a fiat topped peak will result. The area of the 
peak (in counts) divided by the count rate in the fiat 
portion (in counts per second) yields the time-width 
of the peak in seconds. This times the angular velocity 
of the slit gives the angular width of the slit in radians, 
w/R, which is just what is required. The length of the 
slit, l/R, may be similarly determined if the slit is 
rotated 90 ° in its own plane. 

Perhaps the most important consideration is the 
shape of the receiving slit. Fig. 4 shows cross sections 
through three different shapes. For shape (a), the width 
of the slit depends strongly on the direction of the 
incoming ray. If w is 0.25 mm and t is 1.5 mm, rays 
traveling in a direction only 1 o away from the central 
ray will find that the slit appears to be about 10% 
narrower. Shapes (b) and (c) are both good; however, 
for (c), care must be taken to make the slit edge not 
too sharp because of X-ray penetration effects. Shape 
(a) is often the one supplied by manufacturers of X-ray 
equipment. 

One further technique which reduces the difficulties 
mentioned above is the use of a wide receiving slit, 
that is one which is as wide as the range over which 
the narrow slit would be scanned. Here the slit is used 
in a fixed position, and only the length, which is easier 
to measure accurately, is required. Count rates will be 

i 

(a) (b) (c) 

Fig. 4. Three possible receiving slit profiles. 
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much higher and therefore high statistical accuracy 
much easier to obtain. In the measurement of the back- 
ground one may make use of an additional narrow 
slit, but since this correction is small, the width of the 
slit need not be known as accurately. 

Measurement of the absorption coefficient 

The most pertinent thing to be said about absorption 
coefficients is that in general the tabulated values are 
not accurate enough for the present purpose. Measure- 
ment of the absorption, for ordinary wavelengths and 
materials from which uniform foils can be obtained, 
is very easy in principle. In practice the difficulties are, 
uniformity of the foil, measurement of the thickness, 
and control of the X-ray wavelength distribution. 
Table 1 shows some recent measurement of the ab- 
sorption coefficient of Ni for Cu Ke radiation, and 
the spread in values for this fairly easy case gives some 
idea of the care required for a useful measurement. 
Also shown are the values from the International Ta- 
bles (1935) and (1962). The smoothing done in the prep- 
aration of these tables does not always result in the 
best individual values. 

intensities themselves, and it is most important that 
the sample and the apparatus conform closely to the 
conditions for which the intensity formula was derived. 
We refer to considerations such as extinction, preferred 
orientation, purity, surface roughness and porosity in 
the sample, and alignment of the apparatus which are 
beyond the scope of this paper. Having assured our- 
selves regarding these considerations, there remain 
many corrections such as those for background and 
thermal diffuse scattering above background, for po- 
larization, for atomic vibration (Debye-Waller factor), 
for dispersion, etc., which again are not coveled here. 
Throughout all of these operations we must keep in 
mind that if absolute scattering factors cannot be ex- 
perimentally determined with accuracy higher than 
that given by theory, they are of little use. There are 
enough factors to be determined that to hold a useful 
overall accuracy of 1%, we must try to maintain about 
0.1% on each individual measurement. 

I would like to thank L. D. Jennings who has been 
a co-worker for many years. A number of the ideas 
presented here are due to him. 

Table 1. Values of the mass absorption coefficients of 
Ni for CuK7 radiation, from various sources 

48 Alien (1926) 
48.12 Deslattes (1958) 
49.45 Ehrenfried & Dodds (1960) 
4 9 . 6  Bucklow & Woodhouse (1964) 
48.96 Cooper (1965) 
48"3 Hosoya (1968) 
4 9 . 2  International Tables (1935) 
4 5 . 7  International Tables (1962) 

Further effects of the wavelength distribution 

We have already discussed some of the problems which 
result from the real wavelength distribution. The pur- 
pose of this section is to point out that there are other 
factors in equation (1) which depend on wavelength. 
Consider only the effects arising from the presence of 
Kcq and K~2. Each will have its own wavelength (ap- 
pearing as 23), absorption coefficient, Bragg angle and 
hence Lorentz and polarization factors, and dispersion 
correction. These effects can be quite large, but can 
easily be calculated for each case. For example, for 
the 331 reflection of Ni with Cu radiation, the inte- 
grated intensity differs by 4.7% for the two wave- 
lengths. Therefore, if the assumed average wavelength 
differs from the actual average wavelength by one 
tenth of the cq-c~2 difference, the correction would 
amount to about 0.5 %. 

Summary and conclusions 

The determination of accurate absolute structure fac- 
tors depends, of course, on the accuracy of the relative 
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DISCUSSION 

POST: (1) Have you used cylindrical slits? 
(2) What stability do you find in respect of scintillation 

crystals? 

CHIPMAN : (1) No. 
(2) Extremely variable. We get a rare one which remains 

reliable but most are poor or become poor within a year. 
We insist that the design be such that we can remove the 
crystal from the photomultiplier so that they can be in- 
spected visually. This simple procedure provides a ready 
method of detecting deterioration. Part of the problem 
arises from the porosity of the beryllium. 
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YOUNG: Many people have avoided step-scans in the past 
because of the large amount of numerical output. However, 
a step-scan with an individual dead-time correction on each 
step gives us the only accurate way of making counting- 
loss corrections. 

LADELL: There are electronic circuits which are capable of 
making counting corrections automatically up to 106 c.p.s. 
I do not know if these are commercially available. 

HOSOYA: They are from JOEL. 

WEISS: All these devices introduce an error of perhaps 10% 
in the correction. So you must make sure that the correc- 
tion itself is small. 

ROGERS: Dr Hughes at Cardiff found that when the peak 
counting rates with an unattenuated beam were such as to 
lead to 25-30% counting losses, he could avoid these losses 
by suitable attenuation at a cost of only an extra 10% in 
the total time taken for his experiment. 
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Assessment of Aceuraey in Powder Intensity Measurement 
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The assessment of the overall accuracy in powder intensity measurement involves the estimation of 
the error of virtually every term in the intensity equation. Problems related to the accuracy of those 
quantities which are needed for the determination of relative structure factors are discussed. An ex- 
ample of the consideration of errors in an absolute measurement is given. 

Introduction 

The at ta inment  of  experimental structure factors F of 
high precision and the assessment of  their absolute 
accuracy are current problems of considerable con- 
sequence to crystallography and its applications. Many 
possible sources of error exist in the individual tech- 
niques used in X-ray intensity measurements  and in 
the t ransformat ion of the measurements  to F values. 
Investigation of these factors is therefore of prime im- 
portance in defining the accuracy to be associated with 
different levels of  experimental  sophistication. The 
purpose of this paper is to discuss the assessment of  
accuracy in powder intensity measurement.  Considera- 
tion will be limited to measurements  made using the 
symmetrical  Bragg method,  counter technique and 
monochromat ized  radiation, on centrosymmetric crys- 
tals of known structure. 

The square of the absolute F value of a Bragg re- 
flexion f rom a powder specimen can be expressed as 
(James, 1962) 

F2 _-- [ 16zcc_o/xR 2 V 2 sin 0 sin 20 E 
--rZ)t3APo ] [ p(O, OM) j ]' (1) 

where co is the angular  velocity of the detector , / t  the 
linear absorpt ion coefficient, R the distance from the 
specimen to the receiving slit, V the volume of the unit 
cell, ro=e2/mc 2 the classical electron radius, 2 the 
X-ray wavelength, A the area of the receiving slit, Po 
the total power in the pr imary beam, 0 the Bragg angle, 

* Read by K. Kurki-Suonio. 

OM that  of  the monochromator  crystal, p(O, OM) the 
polarization factor, j the multiplicity, and E the total 
diffracted energy for a reflexion. 

The mosaic crystal formula  (1), which assumes sym- 
metrical geometry, proper focusing and correct diffrac- 
tometer alignment,  is valid for a specimen free of pre- 
ferred orientation, extinction, surface roughness and 
porosity. It is essential that the effects of  deviations 
from these conditions be considered in accurate meas- 
urements. In addition, virtually every term in equa- 
tion (1) requires careful consideration. We shall dis- 
cuss mainly  the problems related to the accuracy of 
the quantities in the second term of equation (1); the 
measurement  of  the quantities in the first term - the 
scale factor - has been the subject of  the contr ibut ion 
by Ch ipman  (1969). 

Measuring geometry and diffractometer alignment 

The effects of  deviations from idealized diffraction con- 
ditions are important  for low-angle reflexions, partic- 
ularly if  the receiving slit is very narrow, as is necessary 
when a diffracted-beam monochromator  is used. Hor- 
izontal divergence and an asymmetrical  intensity dis- 
t r ibution in the pr imary beam cause systematic effects 
on E values, which added up can be of the order of  
1% at 0 ~ _ 10 ° (Suortti & Paakkari ,  1966). However, 
the most  serious errors are caused by maladjus tment  
of the specimen. For  instance, an inaccuracy of 0-2 ° 
(in 20) in the zero al ignment of the X-ray focus, the 
centre of the goniometer, the specimen surface and the 
receiving slit may result in an error of __ 5 % in E at 
0 =  10 °, if  the receiving slit is very narrow. To attain 


